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Solid state reaction kinetics: Structure of the simplest
rate–time curve in terms of random tessellations
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The simplest within the geometric–probabilistic approach rate–time curve is specified
and its structure is made explicit in terms of random tessellations. The validity of using the
notion of typical cell in this context is verified via direct simulation, and a new description of
rate–time curves is suggested. In comparison with the conventional approach this provides
a greater scope for exploring chemical regularities of solid state reactions.

1. Introduction: Appearance and essence of rate–time curve

The rate–time curve, result of kinetic experiment and subject of theoretical analy-
sis, is an indispensable tool for exploring chemical reactions of any nature. However,
when solid state reactions are concerned, the following essential peculiarity must be
taken into account: the form of rate–time curve is determined largely by the universal
geometrical regularities of first-order phase transitions that always accompany chem-
ical transformations under study. The latter thus manifest themselves indirectly. The
clear understanding of this goes back to Young [16]. This peculiarity determines a
striking contrast between wide variety of solid state reactions, on the one hand, and
one and the same form of rate–time curve, on the other hand, and stands in the way
of extracting chemical information from experimental data.

In terms of the conventional geometric–probabilistic approach (exposition of
which may be found, in particular, in [1,3,4,15]) the only rigorously tractable sin-
gular point of the rate–time curve is its maximum which divide it into “front” and
“tail”. This point corresponds to maximal extension of reaction interface. Along with
this, various other parts of the curve are selected more or less arbitrarily. This gives
rise to questions which not infrequently remain without substantiated answers.

These questions form part of a wider circle of discrimination issues that was
recently discussed in detail in [9–12]. In brief, the conclusion is that to discern
chemical regularities through universal geometrical regularities of first-order phase
transitions it is necessary (i) to agree geometry of the crystal space of a solid reagent
with geometry of phase transitions, and (ii) to take into account geometrical details
of the impingements of growing nuclei, which are “avoided” in terms of conventional
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formalism. First of these interconnected points received relatively more attention in
previous publications. The objective in this paper is to restore the balance through
specifying the notion of the simplest rate–time curve and considering its structure in
terms of random tessellations.

Any solid state reaction is involved and is fairly seldom mentioned without this
attribute. But it means nothing or little without clear reference to something simpler.
And not infrequently this is the case when solid state reactions are discussed. Therefore,
first of all we need to specify what may serve as an appropriate reference when rate–
time kinetic curves are concerned.

For symmetry considerations supported by formal considerations any description
of solid state reaction kinetics claiming to represent chemical features must be essen-
tially two-dimensional, geometry of the impingements of growing nuclei being de-
scribed in terms of random tessellations [11,12]. Among various random tessellations
based on nucleation and growth models Voronoi tessellations are the simplest [13,14].
They correspond to the situation when all nuclei are formed at the very beginning
of a process. A random tessellation is commonly thought of as a picture obtained
after a growth process has been completed. But along with this (static) view another
(kinematic) interpretation is also possible. Each cell of a random tessellation may be
considered as a “rightful domain” of growing nucleus, and the growth of this nucleus
inside the cell may be followed in detail. Impingements with neigbouring nuclei are
simulated in these terms as impingements of a nucleus with the edges of its cell. We
will restrict ourselves here to the conventional case of linear growth of circular nuclei
and will keep usual assumption that the rate is directly proportional to the reaction
interface length. This means the possibility to pass from the “rate–time” coordinates
to the “interface length–nucleus radius” coordinates. This dependence for a single
nucleus within its Voronoi cell will be termed in the present context a primitive kinetic
curve (leaving the term “elementary” for what is actually connected with elementary
single-barrier acts). The resulting kinetic curve is obviously the sum of primitive
curves for all cells of a Voronoi tessellation.

When solid state reactions are described in terms of the geometric–probabilistic
approach, no simpler kinetic curve may be specified. Therefore, this curve may be
considered as the simplest kinetic curve, and understanding of its structure is necessary
as a basis for analysis of more involved cases when nuclei are formed according to
more complicated laws, several crystal faces participate in a reaction simultaneously,
the limiting stage of a reaction is changed in the course of a process, etc. Within
conventional approach this need is far from being satisfied.

2. Direct simulation

Description of solid state reaction kinetics in terms of random tessellations is
based essentially on the notion of typical cell. For the typical cell of a random Voronoi
tessellation a number of characteristics may be calculated analytically; most common
are perimeter length, area, and typical edge length [13]. The wide practice of using this
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notion in stochastic geometry provides reason enough to expect that it will also work in
describing kinetics of processes under discussion, i.e., that the primitive kinetic curve
constructed for typical cell will provide an acceptable representation of a process as
a whole. Various considerations in favour of this were argued previously [9–12]. But
still it seems expedient to reinforce this by direct simulation, taking into account that
a Voronoi tessellation is a highly correlated construction. In particular, it is necessary
to check that doubled distances of edges of a typical cell from its nucleation point will
coincide with averaged distances 〈δk〉 to the nearest, second, etc. nucleation points
determined (irrespectively of a Voronoi tessellation) by density function [8]

f (δk) = 2(λπ)k
(
(k − 1)!

)−1
exp
(
−λπδ2

k

)
δ2k−1
k (1)

and calculated according to the equation

〈δk〉 =
Γ(k + 1/2)

(k − 1)!
√
πλ

, (2)

where λ is the density of nucleation points on the plane, k is the number of a neighbour,
and Γ(n) is the Euler function.

Also, some additional statistical characteristics necessary in the present context
but not available from the literature were estimated.

2.1. Numerical technique and statistical results

A random Voronoi tessellation was estimated in a most direct way (see, for
example, [6]):

– An ensemble of 1500 nucleation points was chosen at random. (Proceeding from
results obtained in [5] it was concluded that this number of points is sufficient in
the present context.)

– All sets of three points were then considered successively. Each such set specifies
a circle. If no further point is inside the specified circle, then that circle’s center is
a vertex of the tessellation.

– After all vertexes were identified in this way, boundary cells were rejected and
only internal cells were used for statistical calculations. The ultimate density of
nucleation points is 0.93. Thus obtained tessellation is the reciprocal of the Delaunay
triangulation associated to the point.

Statistical calculations somewhat more detailed than it is generally accepted
were then carried out separately for different ν-gons of the obtained tessellation
(ν = 3, 4, 5, . . .). Along with conventional averaged characteristics (probability pν ,
perimeter length Pν , area Sν , typical edge length lν ) table 1 shows for each value
of ν averaged distances to the nearest, second, etc. edges 〈uk〉 and averaged lengths
of corresponding edges 〈ek〉. In the next to last line of the table these character-
istics are given for the whole tessellation. The last line contains known analytical
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Table 1
Empirical mean values for ν-gons of the random Voronoi tessellation.

ν pν Pν Sν lν Averaged distances to edges (〈uk〉) Averaged lengths of corresponding edges (〈ek〉)
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

3 0.023 2.505 0.287 0.235 0.079 0.17 0.458 0.838 0.92 0.747
4 0.133 3.644 0.711 0.416 0.198 0.336 0.463 0.668 1.169 0.983 0.836 0.655
5 0.243 3.856 0.856 0.495 0.213 0.352 0.474 0.621 0.815 1.137 0.947 0.678 0.681 0.413
6 0.281 4.149 1.058 0.57 0.279 0.404 0.511 0.603 0.736 0.887 1.1 0.86 0.732 0.567 0.507 0.383
7 0.213 4.601 1.313 0.645 0.293 0.424 0.54 0.619 0.747 0.891 1.002 1.208 0.869 0.661 0.56 0.504 0.411 0.389
8 0.076 5.112 1.689 0.741 0.374 0.518 0.605 0.689 0.783 0.871 0.987 1.003 1.384 0.728 0.774 0.531 0.44 0.587 0.354 0.314
9 0.023 4.742 1.492 0.716 0.36 0.491 0.539 0.637 0.717 0.794 0.907 0.972 1.023 1.149 1.03 0.316 0.295 0.589 0.356 0.43 0.382 0.194

Whole 4.178 1.075 0.559 0.263 0.395 0.511 0.63 0.767 0.884 0.994 1.083 1.076 1.161 0.897 0.711 0.594 0.477 0.42 0.392 0.332 0.355
Theor. 4.147 1.075 0.591 0.259 0.389 0.486 0.567 0.638 0.702 0.76 0.814 0.865 0.852 0.666 0.52 0.405 0.316 0.246 0.192 0.149 0.116
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results: the number of edges of typical cell is 6; the perimeter length P = 4/λ1/2; the
area S = 1/λ; the typical edge length l = 2/3λ1/2; averaged distances 〈uk〉 are calcu-
lated using equation (2); for corresponding edges expected contributions into perimeter
length are calculated as

〈ek〉 =
1√
λ

exp
(
−πλ〈uk〉2

)
(3)

(see, for example, [2]).
Comparison of such well-known characteristics as the perimeter length and the

area with analytical results characterizes in the present context quality of computations
which were consciously restricted to relatively small number of nucleation points. The
main result is that empirical distances to edges of averaged hexagon coincide well
enough with (divided by two) distances calculated using equation (2). At the same
time equation (3) gives values which are not in agreement with empirical data and the
sum of which is not equal to perimeter length of an averaged cell. This fact, which is
most likely connected with non-Gabriel neighbours, is essential in kinetic simulations.

Generally, the straight line joining two neighbouring nuclei may intersect or not
intersect the edge between them (figure 1). In the former case these nuclei are termed
Gabriel neighbours or full neighbours [13] (e.g., V0 and V1 in figure 1). A nucleus
may generally have neighbours of both types, and we will term corresponding edges
as Gabriel edges (e.g., edge AB in figure 1) and non-Gabriel edges (e.g., edge BC

Figure 1. Difference between Gabriel (AB) and non-Gabriel (BC) edges of a cell.

Table 2
Empirical distribution of ν-gons in the number of non-Gabriel edges.

ν Number of non-Gabriel edges

0 1 2 3 4 5

4 0.514 0.486 0 0 0 0
5 0.141 0.391 0.406 0.063 0 0
6 0.054 0.311 0.365 0.23 0.041 0
7 0.018 0.089 0.232 0.339 0.251 0.07
8 0 0 0.19 0.26 0.49 0.06
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Figure 2. Examples of primitive kinetic curves obtained by direct simulation.

Figure 3. The simplest kinetic curve for the whole tessellation obtained by direct simulation (solid) in
comparison with kinetic curves for different ν-gons (ν = 4, 5, 6, 7, 8) of this tessellation (dot lines).

in figure 1). The present study shows that non-Gabriel edges considerably prevail.
Moreover, ν-gons of the tessellation are distributed in a regular manner in the number
of non-Gabriel edges (table 2). This result will be essentially used below.

2.2. The simplest kinetic curve as the sum of primitive curves

For a direct simulation of the processes of growth and impingements the program
of statistical analysis was adapted for computing the primitive kinetic curve for each
cell of the tessellation. For 0 6 r 6 hν (where hν is the distance to the most distant
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vertex) a series of concentric circles with the nucleation point of a cell as a center
was constructed, and that part which fit into the cell was then determined for each
circle. Figure 2 shows some of primitive kinetic curves obtained in this way. The
simplest kinetic curve under discussion is nothing else but the sum of primitive curves
for all cells of the tessellation. This sum (divided by the number of cells) is shown
in figure 3 together with sums calculated in the same way separately for 4-, 5-, 6-, 7-
and 8-gons. This figure provides a visual evidence that the averaged curve for 6-gons
provides a good approximation of the averaged curve for the whole tessellation. Note
that maximum of each curve coincides with the averaged distance to the second edge
of corresponding ν-gon (cf. table 1).

By and large, above results make it possible to conclude that in simulat-
ing kinetics of growth and impingement processes there are good grounds to con-
sider the typical hexagonal cell as a “plenipotentiary” of random tessellation as a
whole.

3. A kinematic portrait of the simplest kinetic curve step-by-step

Now we are in a position to construct the simplest kinetic curve step-by-step and
thus to get an insight into its structure. We will need the following simple geometrical
relationships. If the growth of a circular nucleus is restricted with one straight line
(figure 4(a)), dependence of perimeter length w on nucleus radius r may be represented
as

w(r) = r

(
2 arcsin

(
u

r

)
+ π

)
, (4)

where u is the distance of a circle’s center from the restriction line. If the growth is
restricted with two lines forming an angle α, then

w(r) = r

(
arcsin

(
u1

r

)
+ arcsin

(
u2

r

)
± α

)
, (5)

where “+” before α corresponds to the situation shown in figure 4(b) (growth outside)
and “−” corresponds to the situation shown in figure 4(c) (growth inside). If growth

Figure 4. Growth of a circular nucleus restricted with one (a) and two (b, c) straight lines.
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proceeds in both directions then

w(r) = 2r

(
arcsin

(
u1

r

)
+ arcsin

(
u2

r

))
. (6)

The same equation holds when growth is restricted by two parallel lines.

3.1. Restriction with one straight line

This is the simplest model situation which provides an idea of the approach
suggested.

If the growth of a circular nucleus is restricted with one straight line, then the
equation of primitive kinetic curve for this nucleus reads

w(r,u) =


2πr, r 6 u,

r

(
2 arcsin

(
u

r

)
+ π

)
, r > u.

(7)

For an ensemble of nuclei with distances u from the restriction line being distributed
according to equation (1) the “observed” kinetic curve W (r) may be represented as an
integral

W (r) =

∫ ∞
0

w(r,u)f (u) du = 2πr − 4πλr
∫ r

0
arccos

(
u

r

)
exp
(
−λπu2)u du. (8)

This curve is shown in figure 5 together with primitive curve f (r, 〈u〉) for the averaged
distance 〈u〉 calculated using equation (2). We see that this primitive curve provides

Figure 5. Nucleus growth is restricted with one straight line: “observed” kinetic curve (solid) in com-
parison with primitive curve (dot) calculated for the averaged distance.
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a fairly good representation of the “observed” curve W (r). In particular, its peak
indicates a characteristic point of W (r) curve, the point of maximal curvature.

3.2. Restriction with two straight lines: appearance of maximum

This model situation enables one to follow appearance of the maximum on a
kinetic curve and to pass to the general case. Restriction lines may be parallel or may
form an angle; in the latter case nucleus radius r must be less than distance h to the
angle.

When there are two (or more) restriction lines, the equation of primitive kinetic
curve may be represented in two different ways. If no restrictions are posed on u1 and
u2, then

w(r,u1,u2) =



2πr, r 6 u1 and r 6 u2,

r

(
2 arcsin

(
u1

r

)
+ π

)
, u1 6 r 6 u2,

r

(
2 arcsin

(
u2

r

)
+ π

)
, u2 6 r 6 u1,

2r

(
arcsin

(
u1

r

)
+ arcsin

(
u2

r

))
, r > u1 and r > u2.

(9)

An alternative possibility is connected with the need to distinguish explicitly distances
to the nearest, second, etc. restriction lines. Then u1 < u2 and

w(r,u1,u2) =



2πr, r 6 u1,

r

(
2 arcsin

(
u1

r

)
+ π

)
, u1 6 r 6 u2,

2r

(
arcsin

(
u1

r

)
+ arcsin

(
u2

r

))
, r > u2.

(10)

Since this is the case in the present context, the second form will be used. Accord-
ingly, it will be assumed throughout that u1 always denotes the distance to the nearest
restriction line, u2 always denotes the distance to the second restriction line, etc., i.e.,
u1 < u2 < u3 < · · · . This is in agreement with the form in which density function (1)
is specified.

Integration with respect to u1 and u2 distributed according to equation (1) gives

W (r) = 2r

[
π −

∫ r

0
arccos

(
u1

r

)
f (u1) du1

−
∫ r

0

∫ r

0
arccos

(
u2

r

)
f (u1)f (u2) du1du2

]
. (11)
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Figure 6. Nucleus growth is restricted with two straight lines: “observed” kinetic curve (solid) in
comparison with primitive curve (dot) calculated for the averaged distances.

Curves W (r) and w(r, 〈u1〉, 〈u2〉) are compared in figure 6: the maximum of W (r)
curve corresponds to 〈u2〉. We will see that this regularity is preserved in passing to
greater number of restriction lines.

3.3. General equation of primitive kinetic curve

In reality the growth of nuclei is restricted by closed ν-gons of a random tes-
sellation. Each ν-gon is characterized by an “urchin”, a ν-dimensional vector u of
distances from the nucleation point to cell edges, and a “hedgehog”, a ν-dimensional
vector h of distances from the nucleation point to cell vertexes. When in the course
of growth the radius of a nucleus becomes equal to any of ui or hi, the dynam-
ics of growth is changed. Accordingly, equation of the primitive kinetic curve
for a ν-gon similar to equations (7) and (10) consists of 2ν analytical expres-
sions.

The whole spectrum of primitive kinetic curves for a given ν may be described
with the use of a (0, 1)-matrix K of the form

K = (U H), (12)

where U is a submatrix describing the situation of a growing nucleus with respect to
edges, and H is a submatrix describing its situation with respect to vertexes. Submatrix
U may be constructed in the following way. Take the set {1, 2, . . . , ν} and form the
set S of all its subsets. Each of 2ν elements of S determines a row of a matrix U0

according to the simple rule: it indicates elements that have unit values; all other
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elements have zero values. For example, element 24 of S indicates that second and
fourth elements in a row have unit values; if, for instance, ν = 6 then this row is
{0 1 0 1 0 0}.

Matrix U0 represents the complete combinatorics of edges without regard for
vertexes. Submatrix H is constructed proceeding from U0. One and the same row of
U0 may generate more than one row of H . If so, this row of U0 is repeated, and
ultimately one gets submatrix U . In other words, submatrix U consists of the same
rows as U0 some of which are repeated. A row of submatrix H may contain 0 to k−1
unit elements where k is the number of unit elements in generating row of U0. Zero
row of H corresponds to each row of U0. If k > 2, further rows of H are constructed
in the following way. If the ith element in a row of U0 has the unit value and the next
element also has the unit value, the ith element of corresponding row of H is assigned
the unit value. (The first element in a row of U0 is considered as the next to the last
element.) Then these basic rows, each of which contains one unit element, are added
in all possible combinations (pairwise, triplewise, etc.) to give new rows of H for
which the generating row of U0 is also repeated. The result is matrix K describing the
whole spectrum of primitive kinetic curves. To save the room, the transposed matrix
for ν = 3 is shown below:

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

 .

Each of its columns (i.e., each row of matrix K) corresponds to a definite situation of
a growing nucleus with respect to edges and vertexes of a ν-gon. For example, the
sixth row means that two edges and the angle between them are reached by a growing
nucleus.

For a particular ν-gon with given set p = {u1, . . . ,uν , h1, . . . ,hν} and all edges
being Gabriel the primitive kinetic curve w(r, p) is calculated in the following way.
Radius r of a growing nucleus goes through [0,hν ] interval with an appropriate step.
For each value of r a row i of matrix K is chosen such that K̃ij(r − pj) for all
1 6 j 6 2; K̃ is a matrix obtained from K by replacing all zero elements by −1. This
row is unique and determines one of 2ν analytical expressions describing corresponding
primitive curve:

wi(r, p) = r

[
KiR+

(
2−

ν∑
j=1

Kij

)
π

]
, (13)

where R is a restriction vector in which top ν elements correspond to equation (4)
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(within π which is taken into account in equation (13)) and other elements correspond
to equation (5) (within the sign):

R =



2 arcsin

(
u1

r

)
...

2 arcsin

(
uν
r

)
arcsin

(
u1

h1

)
+ arcsin

(
u2

h1

)
− arcsin

(
u1

r

)
− arcsin

(
u2

r

)
...

arcsin

(
ui
hi

)
+ arcsin

(
ui+1

hi

)
− arcsin

(
ui
r

)
− arcsin

(
ui+1

r

)
...

arcsin

(
uν
hν

)
+ arcsin

(
u1

hν

)
− arcsin

(
uν
r

)
− arcsin

(
u1

r

)



. (14)

Transition to another row of matrix K occurs each time when r becomes equal to one
of uk or hk.

If an (i + 1)th edge of a ν-gon is non-Gabriel (the nearest edge cannot be non-
Gabriel), then the corresponding row of vector R

arcsin

(
ui
hi

)
+ arcsin

(
ui+1

hi

)
− arcsin

(
ui
r

)
− arcsin

(
ui+1

r

)
(15)

is replaced by

arcsin

(
ui
hi

)
+ π − arcsin

(
ui+1

hi

)
− arcsin

(
ui
r

)
− arcsin

(
ui+1

r

)
(16)

and the value of ui+1 is replaced in p by the value of hi+1. This means (see figure 1)
that complementary angle α′ is taken instead of α and dynamics of growth is not
changed until this vertex is reached.

In this way any possible primitive kinetic curve may be constructed; in particular,
curves shown in figure 2 may be reproduced.

3.4. 6-gons: a kinematic portrait of typical cell

The next step is to construct the primitive curve for the typical cell of random
Voronoi tessellations as described in the previous subsection and to check whether
or not it is capable of representing the “observed” curve obtained above by direct
simulation. But at this stage we face the fact that available information about the
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Table 3
Characteristics of the typical cell.

i % of non-Gabriel 〈ui〉 〈hi〉

1 0 0.279 0.493
2 20.3 0.404 0.602
3 31.1 0.511 0.682
4 36.5 0.603 0.797
5 47.3 0.736 0.926
6 54.1 0.887 1.019

typical cell is insufficient for this and some additional statistical characteristics are
required.

An attempt to find out a most typical mutual situation of the nearest, second, etc.
edges failed: practically all 60 possibilities for 6-gons are present in the tessellation
with fairly close frequencies.

Nevertheless, a peculiar sequence of edges exists and is determined by the statis-
tics of non-Gabriel edges. Table 3 shows the percentage of non-Gabriel edges among
the nearest, second, etc. edges of 6-gons. Note that the nearest edge cannot be non-
Gabriel at all and that from two adjacent edges only more distant from the nucleation
point may be non-Gabriel with respect to less distant. It follows that the sequence
of edges {1, 2, 3, 4, 5, 6} is the only sequence suitable for representing statistical char-
acteristics of typical cell specified in table 3: for any other permutation at least two
edges will be completely Gabriel. These considerations are supported by empirical
averaged distances to the nearest, second, etc. vertexes (table 3) which alternate with
corresponding distances to edges:

〈u1〉< 〈u2〉 < 〈h1〉 < 〈u3〉 < 〈h2〉 < 〈u4〉 < 〈h3〉 < 〈u5〉 < 〈h4〉 < 〈u6〉
< 〈h5〉 < 〈h6〉. (17)

The primitive kinetic curve constructed for the typical averaged hexagon possess-
ing the above characteristics, i.e., the hexagon the nearest edge of which is completely
Gabriel, the second edge is 20.3% non-Gabriel, the third edge is 31.1% non-Gabriel,
etc., is shown in figure 7 together with the “observed” curve reproduced from figure 3.
It may be considered as a kinematic portrait of the typical cell or of the simulated
curve, and we may conclude that this portrait provides a good representation of the
original except a distant part of the tail.

3.5. Front and tail of the simplest kinetic curve

We see that an obvious “asymmetry” exists in describing the simplest kinetic
curve in terms of random tessellations: whereas for the distances to edges we may
use density function (1) (one of relatively few relevant density functions for which
analytical expression is known), for the distances to vertexes we possess only empirical



378 A. Korobov / Simplest rate–time curve in solid state kinetics

Figure 7. Primitive kinetic curve for the typical cell (solid) in comparison with the “observed” curve
(dot) reproduced from figure 3.

information. Accordingly, it is reasonable to consider possible approximations for the
latter.

First consider the situation when distance to the nearest vertex exceeds that to
the most distant edge. It is clear from the above statistical data that this approximation
is fairly artificial. But nevertheless, it enables one to get a keener insight into the
structure of the simplest curve: since within this approximation all edges are reached
by a growing nucleus before the first vertex, the multiple integral

I(r) =

∫ ∞
0

. . .

∫ ∞
0

w(r,u1, . . . ,un)f (u1) · · · f (un) du1 . . . dun (18)

may be represented as

I(r) = 2r

[
π −

∫ r

0
arccos

(
u1

r

)
f (u1) du1

−
∫ r

0

∫ r

0
arccos

(
u2

r

)
f (u1)f (u2) du1 du2 − · · ·

]
= 2r

[
π − I1(r)− I2(r)− · · · − In(r)

]
= 2r

(
π −

n∑
k=1

Ik(r)

)
. (19)

If we restrict ourselves to I1(r) only, this will correspond to the restriction of growth
by one straight line, etc. Figure 8(a) shows four I(r) curves calculated for n = 1, 2, 3
and 4 in comparison with the “observed” curve. Starting from n = 2 they provide a
good approximation to the front of simulated curve; the point at which they are split



A. Korobov / Simplest rate–time curve in solid state kinetics 379

Figure 8. (a) Integral curves calculated using equation (18) for n = 1, 2, 3 and 4 (dot) in comparison with
the “observed” curve (solid) reproduced from figure 3; (b) corresponding Ik(r) integrals for k = 1, 2, 3

and 4.

into a bunch corresponds to its maximum. For n = 1 approximation is satisfactory
within [0, 〈u1〉] interval. Figure 8(b) shows corresponding Ik(r) integrals. We see that
at r 6 〈u2〉 the contribution of I3(r) into I(r) is sufficiently small and that of I4(r)
is practically negligible. This picture demonstrates that front of the simplest kinetic
curve is simpler in a sense than its tail: front is determined mainly by edges of random
cells (largely by two first edges one of which cannot be non-Gabriel at all) whereas
behaviour of tail depends on greater number of factors and is essentially determined
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Figure 9. Smoothed primitive kinetic curve for the averaged hexagon (solid) in comparison with the
“observed” curve (dot) reproduced from figure 3.

by vertexes. This means that in contrary to tail front may be simulated in a relatively
simple way.

Much more adequate approximation is to calculate averaged distances to vertexes
of the typical hexagon with the account of inequality (17) as arithmetic mean

hi =


ui+1 + ui+2

2
, i = 1, 2, 3, 4,

3u6 − u5

2
, i = 5,

2u6 − u5, i = 6,

(20)

where 〈ui〉 are calculated using equation (2). Then the primitive kinetic curve may
be constructed for the hexagon with these characteristics as described above. Pa-
rameters pi for this primitive curve are easy to calculate, and therewith it does
not differ essentially from the curve shown in figure 7. A further possible step
is to apply one of conventional smoothing procedures to this piecewise curve. As
a result one arrives at a fairly good approximation of the simulated curve (fig-
ure 9). This figure was obtained with the use of the symmetric k-nearest neigh-
bour linear least square fitting procedure [7]. But several other tested common
procedures also proved to be suitable. This technique is new for solid state reac-
tion kinetics and seems to be promising for further development of kinetic analy-
sis.



A. Korobov / Simplest rate–time curve in solid state kinetics 381

4. Conclusions

Epithet “the simplest” means in the present context that no simpler alternative
exists within the geometric–probabilistic approach to solid state reaction kinetics. How-
ever, above considerations show that even the simplest kinetic curve under discussion
is not at all simple. The main conclusions concerning it may be summarized as follows.

(1) The simplest kinetic curve is a function which describes the growth and impinge-
ments of two-dimensional nuclei that are formed simultaneously at the very be-
ginning of a process on a single crystal face.

(2) In conventional terms of coverings this curve is “structureless” because of the fact
that geometrical details of nuclei impingements are avoided within this approach.
Its structure becomes explicit in terms of tessellations due to the possibility of
taking these details into account.

(3) In describing the simplest kinetic curve in terms of random tessellations the typical
cell is shown to be representative enough. The distances from the nucleation point
to cell edges may be calculated using equation (1) which means the possibility
to use one of few relevant density functions for which analytical expression is
known.

(4) A reasonable approximation of the simplest kinetic curve may be obtained by
smoothing the primitive kinetic curve constructed for typical cell. This technique
is new for solid state reaction kinetics and may appear to be useful in setting and
solving inverse kinetic problems (IKP).

(5) The simplest kinetic curve is subdivided by its maximum into front and tail. In
terms of tessellations front is simpler than tail and may be described in a relatively
simple way. This may be sufficient when the curve is analyzed as itself or in the
context of a relatively simple IKP. In the case of relatively complicated IKP tail
also may be involved into analysis, but this requires more laborious calculations
with the use of empirical data.

References
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